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Entropic sampling of flexible polyelectrolytes within the Wang-Landau algorithm
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We extend the Monte Carlo methods developed in our previous papers [J. Phys. A 37, 1573 (2004);
Macromol. Theory-Simul. 14, 491 (2005)] and based on entropic sampling within the Wang-Landau algorithm
to simulation of a lattice model of flexible polyelectrolytes. We consider a strongly charged polyelectrolyte

chain accompanied by neutralizing counterions on a simple cubic lattice with periodic boundary conditions.
The Coulomb potential and the excluded volume condition between different ions or beads are taken into
account. The obtained energy distributions make possible the calculation of canonical properties such as
conformational energy, heat capacity, entropy, free energy, and mean-square end-to-end distance over a wide

temperature range in a single simulation.
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I. INTRODUCTION

Many biologically important macromolecules as well as
synthetic polymers dissociate in solution, forming charged
polyions surrounded by an atmosphere of mobile ions. Elec-
trostatic interactions play a very important role in the behav-
ior and functioning of biological polyelectrolytes. The ability
of polyelectrolytes to change their sizes greatly upon change
of ionic conditions and temperature makes them interesting
in many technological applications.

Theoretical description of flexible polyelectrolytes is a
very difficult problem. There exist theories that describe un-
charged polymer chains, but they are generally not appli-
cable to description of polyelectrolytes because of the long-
range character of the electrostatic interactions. At best,
interactions between monomers of polyions can be described
by a Debye-Hiickel approximation, without explicit presen-
tation of counterions. For strongly charged polyelectrolyte
solutions, however, there is no clear understanding of even
the most fundamental scaling properties. So computer simu-
lation has become an indispensable tool for investigating
such systems [1].

The number of computer simulation works on flexible
polyelectrolytes with explicit account of counterions is still
limited [2-5]. In recent years a series of new works in this
area have appeared [6-9], but there are still many open ques-
tions to be considered. One of the problems is declining ef-
ficiency of the standard simulation techniques when the
strength of the electrostatic interactions is increased or the
effective temperature becomes low. Another issue of interest
is the free energy which is closely related to the experimen-
tally observed properties of molecular systems. The main
difficulty in its calculation is that free energy cannot be ob-
tained by simple averaging over the generated configurations
of the system, because it is a property of the whole statistical
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ensemble. That is why one has to use specific methods to
calculate the free energy of the polyelectrolyte system, in
order to be able to make comparisons with experiment.

Generalized ensemble Monte Carlo (MC) methods devel-
oped during the past decade [10-12] have proved to be effi-
cient in simulation of highly nonideal molecular systems,
e.g., in treatment of systems having rough multiminima po-
tential landscapes, and phenomena occurring at low tempera-
tures and high densities [13—-15]. One of these advanced
techniques is entropic sampling (ES) within the Wang-
Landau (WL) algorithm, suggested in 2001 in papers
[16,17]. It is important to note that the latter method is rather
general and can be readily applied to molecular systems of
very different kinds. Indeed, since 2002 the ES-WL tech-
nique has been used by many groups to study fluids [18,19],
glasses [20], collapse of polymer chains [21], proteins
[22-24], and other molecular systems (see, e.g. [25-27]).

In our previous works [28,29] we applied the WL algo-
rithm to ES simulation of free and ring polymer chains on a
three-dimensional simple cubic lattice. For short lattice
chains our numerical results were tested by comparison with
the exact data. For an athermal lattice model the existing
scaling relations, such as the N dependence of the number of
self-avoiding walks and the mean-square end-to-end dis-
tance, were well reproduced in the range of chain lengths up
to N=1000 [29]. In the thermal case we calculated distribu-
tions over the number of monomer contacts. The distribu-
tions were used for obtaining canonical (thermal) averages—
conformational energy, heat capacity, entropy, mean-square
end-to-end distance, and expansion factor. Our thermal data
for the energy agreed well with simulation results of other
authors, obtained earlier with different algorithms [30,31].

The aim of the present study is to develop the ES-WL
approach for flexible polyelectrolyte systems with explicit
ions, and to address some important problems in polyelectro-
lyte theory. Our primary interest is temperature and polymer
length dependence of the thermodynamical properties (en-
ergy and free energy) as well as the average size of the
polyelectrolyte chains. It is well recognized in the theory of
noncharged polymers that such fundamental properties of
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polymer solutions depend weakly on details of the model and
can be understood within lattice models. Lattice models are
more convenient from the simulation point of view. There-
fore in the present study we consider the polyelectrolyte on a
lattice.

The plan of the paper is as follows. In Sec. II we discuss
the model of the polyelectrolyte and the method of simula-
tion, i.e., the general idea of entropic sampling within the
WL algorithm and some modifications of the method. The
obtained results and their treatment are given in Sec. III.
Section IV contains final remarks.

II. MODEL AND METHOD OF CALCULATION
A. Model

In this study we consider a lattice model of a polyelectro-
lyte that was previously studied in our earlier paper [2]. The
polyion is presented as a chain on a simple cubic lattice with
periodic boundary conditions. The chain consists of N, suc-
cessive beads (monomers) connected by rigid bonds of unit
length. Each monomer of the chain carries a unit negative
electric charge. Because counterions of the opposite sign are
necessarily present in any real system to provide electroneu-
trality, an appropriate number of them is added. Each mobile
ion is represented by a single bead which occupies one of the
lattice sites. Counterions are located on a lattice shifted by a
vector (0.5;0.5;0.5) relative to the lattice occupied by the
polyion. Such a shift of the mobile ion sublattice makes the
MC procedure more efficient by eliminating the possibility
of overlaps of the mobile ions with the polyion. In order to
satisfy the excluded volume condition, the beads of the chain
cannot overlap (self-avoiding polymer). That is also true for
the mobile ions. However, as long as we use the WL algo-
rithm for our simulations, self-intersections of the chain and
overlaps of the mobile ions are allowed in the course of
simulations, and are then accounted for in a proper way. The
details of this procedure are described in the next section.

The volume (number of sites) of the simulation cell
for each lattice is V=L3, where L is the side length of the
cell. In our calculations we considered polyions of length
N=10,30,50, and 80 bonds (Np=11, 31, 51, and 81 corre-
spondingly). In the case of absence of added salt conforma-
tional properties of polyelectrolytes are defined by two inde-
pendent parameters, which may be expressed as a
concentration of polyions (which is determined by the vol-
ume of the system) and a concentration of small ions (which
is equal to the concentration of the monomers). We therefore
carried out two series of calculations. In the first one the
specific volume per polyion was kept constant, and in this
case the side length of the cell was the same for all N,
L=30. The volume fraction per monomer, cp=Np/V, in this
case ranged from 4.07X10~* for N,=11 to 3X 1073 for
N,=81. The volume fraction of the counterions, c;, is equal
to that of monomers, cp- In the second series we kept
constant the volume fraction per monomer and took it
to be equal to that for N,= 11 of the first series, i.e.,
c,=4.07X 1074, So for N,=11 the side length of the cell
was the same as before, L=30. For Np=31,51,81 it was
L=42,50,58, respectively.
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Note that in some of our simulations the length of the
polyion exceeds the simulation box size, so that the polyion
can in some configurations contact a periodic image of itself.
This can be interpreted as modeling of a finite polyion con-
centration when periodic images mimic neighboring poly-
ions.

Both polyelectrolyte monomers and mobile ions interact
by Coulombic potential V(r)=g,q;/r, where g, are charges of
the corresponding species (¢;=+¢q; ¢>0). The natural units
for our model are the lattice constant a and the charge g. So
the energy is measured in ¢?/a units and the temperature in
q*/ak. Remembering the definition of the reduced polyion
charge density £ as the ratio of the Bjerrum length (distance
at which the energy of interaction of unit charges is equal to
the thermal energy) to the charge spacing along the polyion,
we can conclude that é=1/T in the adopted units. Thus the
correspondence is established between the reduced tempera-
ture 7 of our model and the parameter &, the characteristic of
real polyelectrolytes.

A correct treatment of the long-range electrostatic interac-
tions is of great importance for simulations of polyelectro-
lytes. It is generally accepted that the Ewald summation
[32,33] is the most consistent way to treat them, although the
possibility of artifacts due to artificial periodicity introduced
by the Ewald summation is still debated [34]. We compared
Ewald summation results with the data obtained within the
minimal image convention. Our test simulations for shorter
polyion chains N,=11,31 showed that the minimum image
approach gives results practically coinciding with the Ewald
summation for the density of energy states of the system [see
Figs. 1(a) and 1(b)]. For the polyelectrolyte with N,=11, a
small difference between the distributions obtained by these
two approaches is observed in a very small area of high
energies, which can slightly affect high-temperature proper-
ties of the system. For N,=31 the distributions coincide al-
most completely. For longer chains, simulated with a larger
number of ions, the screening is stronger and the difference
between these distributions is not supposed to be greater.
Note also that the minimum image convention explicitly in-
cludes the interactions between all the particle pairs in the
system, which removes in fact most of the shortcomings of
the simple spherical electrostatic cutoff scheme with small
cutoff distance that is sometimes used in biomacromolecular
simulations. Using an Ewald summation over periodic im-
ages seems natural for systems with inherently repeating
nonuniform charge distribution (DNA in crystalline solution,
multilammelar membranes) but the advantages of an Ewald
summation for treatment of an isolated macromolecule are
not so obvious. Taking also into account the fact that the
minimum image approach in our case works much faster
than the Ewald sum, we used the minimal image approach in
most of our productive runs.

B. Method

The aim of our studies is to obtain the density of energy
states ()(E) for the investigated system. This function can
then be used to compute canonical averages in a wide range
of temperatures by simple integration. Free energy and en-

016705-2



ENTROPIC SAMPLING OF FLEXIBLE...

04
-104
—_
= 204
GO
E" -30-
40
-50
(a)
04
-204
@ 40
GO
ny 604
2
-804
-100
-120
-50 0 50 100 150 200 250
(b) E

FIG. 1. Normalized distributions Q(E) for a polyelectrolyte, ob-
tained by the minimum image convention (empty squares) and by
the Ewald method (filled circles); (a) N,=11 and (b) N,=31.

tropy can be obtained from the density of states as well.
We mostly use the same method as in our previous works
[28,29], i.e., entropic sampling [11,12] within the WL algo-
rithm [16,17], with some modifications described below. We
consider a configurational space of the system consisting of
all possible configurations, including overlapping ones. Each
nonoverlapping configuration can be characterized by a cer-
tain energy, which we assume to be in the range between

Emin and Emax. This range of energies is divided into a finite
number of equal small intervals (bins or discrete states), so
that each nonoverlapping configuration belongs to one of
them. The number of energy bins in our calculations ranged

from about 100 to 1000 depending on N,,. Emin was chosen
for each N such that no configurations fall into a number of

states close to Emin' So the extreme left state which was still
visited during a simulation corresponds to an observed mini-

mum energy E;, = Emm. The attained E;, can be considered
as our estimate of the classical ground state of the system.

In principle Emax could be chosen in the same way, so that
during a simulation no configurations assume an energy

higher than Emax, and a few bins remain empty on the right-
hand side of the energy range. Actually, since very high en-
ergy states are not important for calculating canonical prop-
erties at finite 7>0, we use another (a more economic)
scheme at the right side: Emax is chosen to be slightly lower

than the actual E,,, which for our further calculations is
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unimportant. For all nonoverlapping states with energy

E>E,_ . a single bin is assigned.

Another set of bins is introduced for overlapping configu-
rations. In principle, we can use one single bin for all over-
lapping states and get its normalized weight during calcula-
tion. However, as clearly shown by our previous work [28],
such an approach is not stable, and hence it is necessary to
introduce a scheme with a set of bins for overlaps. Each of
them corresponds to configurations with a certain number of
overlaps of the polyion’s beads and of the free ions. The
number of bins in this set depends on the length of the poly-
ion and is taken to be in the range 10-100. Every possible
number of overlaps less than this boundary value is associ-
ated with a separate bin, and one additional bin is used for
the number of overlaps exceeding it.

Each configuration of the simulated system can have ei-
ther a definite number of overlaps or, if no overlaps occur,
have a definite energy. Thus any configuration of our system
can be attributed to one of the bins of the first or second type.
During simulation we count the number of states correspond-
ing to each bin, which can then be converted into the fraction
of nonoverlapping configurations (), the fraction of all over-
lapping configurations 1—(), and the normalized density of
states (}(E) taken over nonoverlapping configurations only.

We perform a random walk in the whole configurational
space according to the WL procedure. As in previous works
[28,29], it is convenient to introduce the entropy distribution
S;=1n Q; (initially all §;=0). Two sets of counters are intro-
duced: One accumulates S; for each bin (entropy counter);
another one, n;, counts visits to the corresponding states
yielding at the end of the run the normalized visit probabili-
ties p; (the histogram). The aim is to achieve a flat distribu-
tion, p;, over all the states.

A MC step includes a standard trial change of the state
with a uniform coordinate distribution. For our polyelectro-
lyte model, two kinds of steps are performed: We modify the
chain’s conformation or move a mobile ion. The probability
of each kind of step was taken to be 50%. In order to change
the position of a randomly chosen ion we make a shift +A
along one of the axes X, Y, or Z, with A=1,2,3. In order to
change the conformation of the chain we perform steps of
three different types.

(1) We choose homogeneously one of the beads from 0 to
N,~I (e.g., the kth) and change randomly the directions of
chain links between beads k and k+[. The remaining piece
undergoes a parallel shift. Because we do not want to change
the energy of the system strongly in a single step, the trajec-
tory displacement should be small. That is why in most of
our calculations / was taken equal to 1 so that the change of
the conformation was not large.

(2) If by a random choice we find two neighboring per-
pendicular segments, we change their directions so that the
new direction of the first segment is the former direction of
the second one and vice versa (the so called I' move).

(3) Reptation of the chain is also used: We cut off a seg-
ment from one end of the chain (which is chosen randomly)
and build a new one at the opposite end in a random
direction.

The fractions of steps (1), (2), and (3) were 50%, 40%,
and 10% respectively.
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The trial steps are accepted with the following transition
probability condition [16,17]:

p(i —i")=min[1,exp(S; - S;)]. (1)

If this condition is fulfilled, the trial state (i’) is accepted,
and in the opposite case the accepted one is the initial state
(). Finally, the entropy of the accepted state (S; or S;/) is
augmented by AS, and the corresponding counter of visits (n;
or n;) is increased by 1.

A series of such elementary steps constitute a sweep. Ac-
cording to the original WL algorithm [16,17], at the end of a
current sweep AS had to be decreased: AS— cAS by a factor
0<c<1 (in [16] ¢=0.5, and the initial value AS=1 was
used). After several sweeps the S; dependence is formed and
fine-tuned in the whole range of configurations. At the same
time, the probability distribution of visits becomes flat, with
probabilities p; equal to the inverse of the number of bins.

In this work we introduced slight modifications in this
simulation technique. We use a factor ¢=0.9 instead of the
value ¢=0.5 used in the majority of previous works imple-
menting the WL algorithm. The reason for increasing this
factor is that in order to reach configurations with extremely
low probability, one needs to accumulate a rather large en-
tropy difference between states of low and high probabilities,
which is difficult to get if the increment of the entropy, AS,
decreases twice after each sweep. With a factor of ¢=0.9 we
have to perform more sweeps to reach values of AS small
enough for fine-tuning the distribution over energies Q(E);
however, this enables us to attain energy states having ex-
tremely low probability (down to 10728%).

Within the WL algorithm the probability of transition to a
new state is small if the current state is rare in comparison
with the trial one, and vice versa. That is the key point in
obtaining statistics for the states with low probabilities. But
it can also cause certain problems. If the system drops into
some newly found state after many sweeps, it is not able to
get out of it until the corresponding quantity S; becomes
large enough and the probability of transition becomes ap-
propriate. The AS value decreases in every following sweep
according to the WL algorithm. But if, after many sweeps,
AS is small and S;=0 for a newly visited state, then S; cannot
reach the necessary magnitude comparable with that of pre-
viously visited states, and the system gets stuck in that state.
The problem of such “holes” was previously considered by
Troster and Dellago [35] for the case of an Ising model. Here
we introduce another modification to solve this problem. We
consider separate AS values for such states, contrary to the
usual WL algorithm where quantities AS are the same for all
the states. If the system has not visited some states during the
present sweep we do not change the corresponding value of
AS, whereas all visited states assume values of AS=c", n
being the sweep number. That is how AS for a newly visited
state remains large enough and an appropriate value of S; for
this state can be accumulateted faster.

The number of MC steps in the first sweep was 10°. In
order to increase the precision of the energy distribution in
the course of tuning the entropy, the number of steps in each
subsequent sweep was increased by multiplying the previous
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number by 1.03. In all cases the used number of steps was
sufficient to achieve flatness of the visiting histogram during
each sweep. About 120 sweeps were made for each simu-
lated system, though for shorter polymers results became
stable after 50-60 sweeps.

Within the procedure described above, the fraction of
nonoverlapping configurations (), can be evaluated as

nonoverlap
> exp(Sy)

k
Qo=—g— ()

> exp(s)
/

where the sum in the nominator is taken over bins corre-
sponding to nonoverlapping configurations while a sum in
the denominator is taken over all the bins. Similarly, the
normalized density of states is calculated as

exp(S))
nonoverlap l : (3 )

> exp(Sy

k

Q(El) =

In our calculations ) ranged approximately from 0.15
for N,=11t05.5X 107° for N,=81. These data are presented
further in Sec. III. }(E) is calculated rather accurately in a
very wide range of orders of magnitude, e.g., from 107! to
10728 [see Figs. 2(a) and 2(b)]. So the WL algorithm pro-
vides calculation probabilities of extremely rare events.

In order to obtain reliable distributions ()(E) it is neces-
sary for the system to visit uniformly all possible energy
states during a simulation: The histogram at the end of each
sweep has to be nearly flat. In Fig. 3 the fraction of visits for
each energy state is presented. The data are taken from the
simulation of a polyelectrolyte with N,=11 (=5 X 108 MC
steps). One can see that the relative deviation of the fractions
of visits from the average value (inverse of the number of
visited energy states) is not greater than 0.4% in almost the
whole range of energies. In a rather small area (low energies)
the deviation is less than 2%, which is also quite a good
result. In Fig. 4 we present the dependency of the energy of
the system on the MC time for N,=11 (¢ denotes the step
number). One can see that the system walks many times
between points of maximal and minimal energies, and the
whole range of energies typical for this polyion length is well
covered.

The distribution (E;) =(}; obtained within the WL pro-
cedure is then used for calculating canonical averages over a
wide range of temperatures according to standard relations;
e.g., for the internal energy we get

E;
EiE,-exp<— ?)Qi

E. = <E>Can'
S

(EXT) = (4)

(E?) is calculated in the same way, yielding the heat capacity
as a function of temperature:

C(T) = T*(EXT) - [(EXD)T). (5)
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In the expression for the energy (4) the normalization of
(), is not important, since {); enters both numerator and de-
nominator in Eq. (4) and any constant factor cancels. In or-
der to calculate the free energy we must use instead the
quantity W, (20();, which equals the total number of the sys-
tem’s configurations with the energy E; satisfying the ex-
cluded volume condition. W, is the number of all possible
configurations of the system including overlapping ones (in-
dex “ph” stands for “phantom” chains, that is chains allow-

0.00458
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0.004524 °

0.00450 — T T T T T 1
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E

FIG. 3. Rates of visits p(E) (histogram) for N,=11. Solid line
indicates predicted level N,",l (inverse number of energy bins).
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FIG. 4. Dependency of the energy, E, on the number of MC
moves, £, in the process of entropic sampling, N,=11.

ing overlaps, and phantom ions), £} is the fraction of con-
figurations without overlaps of ions and polymer beads
among all the configurations, and (); is the normalized den-
sity of energy states. So for free energy F we have

E.
F(T)=-TInY, exp(— T’)thn(,n,.

E,
==TIn Wy, —T1In Q~ TlnE exp(— T’)QZ (6)

Now the free energy is expressed as
F=Fy+AF, +AF, (7)

where F,=—TIn W, is the free energy of a phantom sys-
tem, AF,=-T1n (), is the excess free energy for the ather-
mal case, and

E.
AF==TInY, exp(— T’)Q, (8)

is the excess canonical free energy (it vanishes in the absence
of intereactions).

The canonical entropy S(T)=[E(T)-F(T)]/T can be ex-
pressed in a similar way:

S(T) = Sy + AS, + AS(T), 9)
where S,=—(1/T)Fy,=In Wp,, AS,=—(1/T)Fy=1In €, and

E.
In>, exp(— T’)Q,

(10)

_E(T) AF(T) E(T)

AS(T) +
T T T

For the lattice system consisting of the polyion and N,
counterions the total number of configurations is

thZmethz’ (11)
where
thl =L3 X 6(Np_l) (12)

is the number of phantom polyion conformations and
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TABLE L. Summary of the results. N, is the number of beads in
the polyion, L is the simulation box length, S, is the entropy of the
phantom system, (), is the fraction of nonoverlapping configura-
tions, AS,=In ) is the excess entropy for the athermal case ob-
tained within the WL procedure, while ASS is the same quantity
evaluated from scaling relations (14)—(17), T is the temperature of

maximum of \(R2)(T), and \(R?)(T}) is its maximum value.

Np L Sph QO ASal AS:t'dl TO \”<R2>(T0)
11 30 1229 0.146 -1.92 -194 092 5.60
31 30 302.2 0.00121 -6.72 -6.72 1.26 15.04
51 30 467.8 9.00Xx107° -11.62 -11.62 1.44 22.66
81 30 7020 5.81x107° -18.96 -19.04 1.66 31.88
31 42 3345  0.00123 -6.70 -6.71 1.18 15.94
51 50 5474 9.19x10°% -11.60 -11.58 1.28 26.75
81 58 864.1 5.98x10° -18.96 -18.94 1.36 40.38
LGNy
W= — (13)
ph2
N,!

is the number of ways to place N, phantom counterions in
the cell of volume L°.

The entropy of a phantom system, defined as S,,=In Wy,
with W, computed according to Eqs. (11)—(13), is given in
Table I for each of the simulated systems.

The fraction of nonoverlapping configurations (), can be
factorized into the ionic and polymer parts:

Qp= Q01 Q, (14)

where (), is the fraction of polyions without intersections
and

(L%)!

Qo= CY8I Wy = CoN) 1%
P

(15)
is the fraction of configurations without overlaps for the sys-
tem that consists of the counterions only (ng’ is the binomial
coefficient).

Qy; can be predicted theoretically using the scaling rela-
tion [30,36] for the number of self-avoiding walks

Wy=Au"N"!, (16)

where the length of the walk N equals N,—1. For the simple
cubic lattice, the values of the constants are u=4.6838,
v=7/6, and A=1.17 [36,37]. Then

Qg =LA (N, = 1) W = A (N, = 1) 116%7Y.
(17)

)y, is also calculated from (), obtained in our WL simula-
tions using Eq. (2) (see also [28]). A comparison of these
data sets is presented in Sec. III (see Table I).

The excess entropy for the athermal case, AS,=In (), can
be estimated from Egs. (14) and (15). According to relation
(8) the canonical contribution AF depends on the distribution
Q); only, and can be easily calculated. One can also obtain
AS(T) using the expressions (4) and (10).
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For the mean-square end-to-end distance we can calculate
the average (R?); for each ith bin corresponding to nonover-
lapping configurations, 1=i<=ng, within a WL procedure
and finally get canonical averages in a standard way similar
to Eq. (4):

S, @en- 2o,

E.
expl - =)oy
E,exp< T) ;

<R2>(T) = = <<R2>i>can- (18)

II1. RESULTS

The key result of our WL calculations is the density of
states Q)(E), which enables us to obtain canonical averages in
a wide temperature range. The distributions (E) for poly-
electrolytes in two series of calculations are presented in
Figs. 2(a) and 2(b).

As long as we use E/N, scale for the energy [Figs. 2(a)
and 2(b)] it can be seen that the values of specific lowest
energies for different polyionic lengths are close to each
other: In the first series Emin/sz—1.754,—1.847,—1.799,
—1,734 for N,=1 1,31,51,81, respectively; in the second se-
ries Emm/sz—1.754,—1.840,—1.809,—1.695. We can con-
sider these values attained during the simulation as our esti-
mates of the ground states of our model. Note also that all
the obtained specific lowest energies are similar to each
other, which means that they depend little on the length of
the polyion and on the polyion or monomer concentration.

The dependencies of the specific energy of the system on
temperature, E(T)/N,, obtained from Eq. (4), are presented
in Figs. 5(a) and 5(b). We also used the Metropolis algorithm
to calculate the energy for N,=11 and N,=81 at some tem-
peratures and made comparisons with the corresponding WL
results. The two methods show good coincidence in the
range of temperatures 7=0.05-1000 for N,=11 and in the
range 7=0.2-1000 for N,=381.

In Figs. 5(a) and 5(b) one can see that there exist horizon-
tal asymptotes at high and low temperatures. At 7—0,
E(T)/N, tend to the specific energies of the ground states,
which are close to each other for polyions of different
lengths. The asymptotes at T— o are different for different
N, and their values become higher with increasing polyion
length. It is possible that high-temperature asymptotes tend
to a certain limiting value at N,,— oo, though calculations for
longer chains are required in order to clarify this possibility.

There exists another way, different from Eq. (4), to obtain
the E(T) dependency. If the distribution (E) is known one
can employ the microcanonical formula &S/0E=1/T.
We computed E(T) this way, by taking &S as the difference
of entropies between neighboring energy states, oS;
=In[Q(E;,;)]-In[Q(E,)], and SE as the energy difference be-
tween them, 0E=FE;.|—E;. So for each E; the corresponding
1/T; value is calculated, and we get the dependency E(7T). In
Fig. 6 a good coincidence is observed for E(T) dependencies
obtained according to these two approaches in a wide tem-
perature range, 7=0.06—50. It is seen that the data obtained

016705-6



ENTROPIC SAMPLING OF FLEXIBLE...

61

0.01 0.1 1 10 100 1000
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(b) T

FIG. 5. Specific energies as functions of temperature for
N,=11 (dot line), 31 (dash line), 51 (solid line), and 81 (dash-dot
line). Squares are results of Metropolis simulations. (a) First series
of calculations (fixed side length of the cell) and (b) second series
(fixed volume fraction per monomer).

by canonical averaging (4) are slightly higher than the results
of numerical differentiation only in the high-temperature
area. This depends on the fact that all energy states take part
in determining E(T)=(E).,,, contrary to the latter approach
where small energy intervals are used for calculating this

N =351
)

200

1004

-100 T T T T
0.1 1 10 100

T

FIG. 6. Temperature dependencies for internal energies:
N,=11 (dot line and diamonds), 31 (dash line and triangles), and 51
(solid line and squares) computed for the first series of simulations.
Curves are for the canonical averages [Eq. (2)] and signs are for the
microcanonical values.
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FIG. 7. Heat capacities as functions of 7. Notations as in
Fig. 5.

dependency. This is also related to a slight nonequivalence of
the ensembles.

In Figs. 7(a) and 7(b) temperature dependencies of heat
capacity are presented. For shorter chains, N,=11,31, a rela-
tively weak multimaxima shape of C(T) dependencies is ob-
served, while for longer chains, N,=51,81, there emerge
strong peaks which are most distinct for the second series of
our data [Fig. 7(b)]. These narrow peaks might be considered
as evidence of transition of the polyion to a closed globular
conformation, which strongly resembles a second order
phase transition. At low and high temperatures the C(7T)
functions tend to zero. It is relevant here to point out the
recent work of Rampf, Paul, and Binder [21], where the WL
algorithm was applied to simulate a flexible noncharged
polymer chain on a lattice. The obtained C(T) dependencies
for different chain lengths have a long high-temperature
shoulder and a tall peak at its left side (Fig. 2 of [21]). Finite
size scaling of the C(7) maxima performed in that work
indicates the existence of a two-stage transition for chains of
finite length: Coil-globule and crystallization. Our C(7) data,
Fig. 7, have qualitatively the same character, i.e., a long
high-temperature shoulder with a strong peak at its left side
for N,=51,81, Fig. 7(b). However, our data are yet insuffi-
cient to make a similar analysis and simulations of longer
polyions are needed.

In Figs. 8(a) and 8(b) we present the temperature depen-
dency of the canonical part of the free energy AF(T) (8)
together with the energy E(T) according to Eq. (4). It can be
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FIG. 8. Energies E (dash lines) and excess canonical free ener-
gies AF (solid lines) as functions ot 7. (a) First series of calcula-
tions and (b) second series.

seen that E(T) and AF(T) have the same asymptotes at
T—0 and at T— o for each N,,. In order to understand this,
consider first the case of low temperatures. In the expression
(8) at T— 0 we retain only significant terms:

AF(T) = - Tln[exp(— %)Ql} =- T(— %) -TlnQ,

— Eq,

where E, =E,;, is the lowest energy (the ground state of the
model) and 0, =Q(E,). From the expression (4) one can see
that for the energy at T—0

E, exp(— %)Ql
EXD——F v =
exp(— %)Ql

so both E(T) and AF(T) tend to the energy of ground state
E,.

Considering another limit, 7— %, we use the expansion of
the exponent in Eq. (8):
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FIG. 9. Dependency of average end-to-end distance \r’m on
temperature. First series of calculations (constant side length of the
cell): N,=11 (solid line), 31 (dash line), 51 (dot line), and 81 (dash-
dot line). Second series of calculations is given by solid lines which
approach corresponding lines of the first series at 7— . Crosses
denote Metropolis method data for N,=11 and 81 for the second
series of calculations. Horizontal lines at the right-hand side corre-
spond to the scaling values V”(R%,):l.025 X N3, where N=N,-1.

E, 1
AF(T) =~ -TIn>, (1 - ?Z)Q,: - Tln(l - }E E,-Q,-)

(because X;Q);=1). We expand the logarithm and finally ob-
tain AF(T)=Z,E Q). From the expression (4) we get for the
energy at T— o°:

Ei E;

BN~ S— =S EQ,

>

1

A noticeable feature of the AF and E curves is that each
pair of curves for different N intersects. It is striking that
points of pairwise intersections are very close to each other
both for E and AF. For the second series of data [Fig. 8(b)]
it is clearly seen that all the curves pass through a single
common point. For AF this point is AF=0, T=0.2. This
means that the excess canonical free energy of the system is
almost independent on the polyion length at this temperature.
Note also that strong peaks of the heat capacity, Fig. 7(b), are
in the same temperature interval.

The obtained data for (), the fraction of nonoverlapping
configurations, as well as corresponding entropy contribu-
tions, S, are given in Table I. We have also evaluated values
of S, from the scaling relations (14) and (15), which are
given in Table I in column S5, One can see that the devia-
tions of the MC data from analytical scaling results for AS,,
are in the range (0.1—1)%, which confirms that overlapping
configurations are accounted for in our approach in a proper
way.

The dependencies of average end-to-end distance \,'W
on temperature for both series of our data are presented in
Fig. 9. The curves for all N, have maxima in the neighbor-
hood of T=1. This feature is in agreement with the results
obtained by the Metropolis method in our early work [2] and
also with the results presented by Klos and Pacula in [6].
Locations and magnitudes of the maxima are collected in
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Table I. The maxima are higher for the second series of data,
and they increase faster with the growth of the polyion
length. The effect is rather expected since, in the first series
of simulations, the counterion concentration is increasing
upon increase of the polyion length, which leads to higher
screening and slower growth of the polyion coil. It can also
be seen that the maximum of the curve \/@(T) slightly
shifts to higher temperatures with increasing polyion length,
the effect being more pronounced in the first series of simu-
lations. The general result is that at 7= 1 the polyion is most
expanded compared with its conformations at other tempera-
tures, though the exact location of the temperature maximum
depends on the polyion length and the monomer concentra-
tion.

At high temperatures \/@ should tend to the scaling
value for the neutral self-avoiding chains in the athermal
case, \/@ o« N3 where N =N,-1 (according to our estima-
tions in [28] the proportionality coefficient in this expression
equals 1.025). As seen in Fig. 9, our curves indeed asymp-
totically tend to these levels for both series of data.

At T<1 the counterion condensation becomes very
strong, leading to a pronounced decrease of the chain’s size
and transition to a globule. For N,=51,81 this transition has
the character of an abrupt jump at 7~0.1-0.2, which is
especially pronounced for data of the second series. Together
with results for the heat capacity [Figs. 7(a) and 7(b)] it can
be treated as evidence for a phase transition of the system.
Comparison with data, obtained by the standard MC method
(Metropolis procedure) shows complete coincidence of the
two approaches for N,=11 within the whole range of T. For
the longest polyion, N,=81, good coincidence is obtained
within a wide range of 7. Only in the regime of collapse
there is observed a noticeable discrepancy between the two
data sets, although the qualitative behavior is similar also in
this interval, 0.2=T7=0.5. A possible reason for this dis-
agreement is the existence of extended polyion conforma-
tions of low energy, which are poorly sampled (or are not
sampled at all) in canonical simulations. We therefore con-
sider the WL result in this temperature range as more reli-
able.

Experimentally, collapse of strongly charged polyelectro-
lytes is often observed when multivalent ions are added to
the solution [38,39]. Note that the reduced temperature T
=1/¢ cannot change much due to a change of the real tem-
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perature in an experiment (taking into account that the di-
electric constant decreases with the real temperature), but a
substantial change of T can be reached by increasing the unit
charge ¢, for example by substitution of monovalent ions by
multivalent ones. For most of real polyelectrolytes parameter
£<<5, and the corresponding reduced temperature is above
the phase transition point at 7=~ (0.2. However, substitution of
monovalent counterions by ions of valency Z leads to an
effective Z-fold decrease of T, and many real polyelectro-
Iytes fall into the region when collapse of a polyelectrolyte
chain is possible.

IV. CONCLUSION

In this paper we extended our previous ES simulations of
polymer models within the WL algorithm [28,29] applying it
now to flexible polyelectrolytes. We considered a lattice
model of a polyion surrounded by explicit mobile ions with
Coulombic interactions and obtained energy distributions of
nonoverlapped configurations. These distributions provide
calculation of the internal energy, heat capacity, free energy,
entropy, and mean square end-to-end distance in a wide
range of temperatures by a simple one-dimensional integra-
tion. Calculations have been done for different polyion
length and monomer concentrations.

The main advantage of the used scheme, as we see it, is
that overlaps of chains are not rejected but are accounted for
in a proper way. Certainly such an approach when parts of a
chain are allowed to pass through each other can be used
only in treatment of equilibrium properties and by no means
are applicable in dynamics. However, in dynamical simula-
tions of polymers they could be helpful in preparing a set of
equilibrium initial configurations.

In studies of equilibrium athermal and thermal properties
the ES-WL sampling schemes can be readily applied to more
complicated models, e.g., flexible and semiflexible polyelec-
trolytes with the added salt, ring, branched, and anchored
polyionic chains.
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